Malakah Tentang Nikel

BAB I
PENDAHULUAN

1.1. Latar Belakang
Nikel ditemukan oleh Cronstedt pada tahun 1751 dalam mineral yang disebutnya kupfernickel (nikolit).
Nikel merupakan bahan galian yang mempunyai nilai ekonomis yang tinggi karena pada masa sekarang dan masa yang akan datang kebutuhan Nikel semakin meningkat disamping dari kebutuhan lainnya yang persediaannya semakin terbatas, sehingga mendorong minat pengusaha untuk membuka pertambangan Nikel.

Nikel adalah unsur kimia metalik dalam tabel periodik yang memiliki simbol Ni dan nomor atom 28. Bentuk struktur kristalnya FCC. dan juga bersifat magnetis.Nikel mempunyai sifat tahan karat. Dalam keadaan murni, nikel bersifat lembek, tetapi jika dipadukan dengan besi, krom, dan logam lainnya, dapat membentuk baja tahan karat yang keras.
Perpaduan nikel, krom dan besi menghasilkan baja tahan karat (stainless steel) yang banyak diaplikasikan pada peralatan dapur (sendok, dan peralatan memasak), ornamen-ornamen rumah dan gedung, serta komponen industri.
Nikel adalah bahan galian golongan A, yang dimana bahan galian yang tergolong strategis. Minyak bumi dan batubara juga sama dalam bahan galian golongan A, yang kita tahu dewasa ini bahan galian golongan A sangat dicari oleh investor – investor yang bergerak dibidang pertambangan dan usaha lainnya.
Bahan galian Nikel banyak fungsinya, salah satunya dalam pembuatan baja yang tahan karat, bisa juga dipakai sebagai alat – alat laboratorium Fisika dan Kimia, serta banyak lagi fungsi lainnya, sehingga menarik sekali untuk dikelola.
Dengan kondisi demikian maka dari pihak Universitas Palangkaraya membuat salah satu Fakultas Teknik, dan dalam program studinya ada jurusan Teknik Pertambangan yang dimana ada mata kuliah yang mempelajari Pengantar Teknologi Mineral yang mencakup mineral – mineral berharga salah satunya Nikel. Dengan demikian sebagai mahasiswa harus mengetahui dan mengerti mengenai bahan galian Nikel serta diharapkan bisa memanfaatkan bahan galian tersebut dan juga bisa membuka lapangan kerja baru.

1.2. Maksud dan Tujuan
Adapun maksud dari pembuatan makalah ini adalah :
 Untuk menerapkan dan mengembangkan teori yang didapatkan pada bangku kuliah khususnya mata kuliah yang mempelajari tentang Pengantar Teknologi Mineral.
 Menambah pengetahuan tentang Mineral Logam, sehingga bisa tahu baik dari proses terbentuknya, pengolahan, sampai ke pemasarannya.

Adapun tujuan dalam pembuatan makalah ini adalah sebagai berikut :

 Menerangkan dan membandingkan antara pengetahuan diperkuliahan dengan informasi – informasi serta keadaan di luar yang sebenarnya, sehingga dapat saling mengisi kekurangannya.
 Sebagai salah satu syarat dalam menyelesaikan mata kuliah Pengantar Teknologi Mineral pada Fakultas Teknik Jurusan Teknik Pertambangan 2009 Universitas Palangkaraya.

1.1. Tabel Periodik
28 kobal ← nikel → tembaga

-

Ni

Pd

1.2. Keterangan Umum Unsur
Nama, Lambang, Nomor atom
nikel, Ni, 28
Deret kimia
logam transisi

Golongan, Periode, Blok
10, 4, d

Penampilan
kemilau, metalik

Massa atom
58.6934(2) g/mol

Konfigurasi elektron
[Ar] 3d8 4s2

Jumlah elektron tiap kulit
2, 8, 16, 2
1.3. Ciri-ciri fisik
Fase
padat

Massa jenis (sekitar suhu kamar)
8,908 g/cm³
Massa jenis cair pada titik lebur
7,81 g/cm³
Titik lebur
1728 K
(1455 °C, 2651 °F)

Titik didih
3186 K
(2913 °C, 5275 °F)

Kalor peleburan
17,48 kJ/mol
Kalor penguapan
377,5 kJ/mol
Kapasitas kalor
(25 °C) 26,07 J/(mol•K)
1.4. Tekanan uap

P/Pa 1 10 100 1 k 10 k 100 k
pada T/K 1783 1950 2154 2410 2741 3184

1.5. Ciri-ciri atom
Struktur kristal
cubic face centered
Bilangan oksidasi
2, 3
(mildly basic oxide)

Elektronegativitas
1.91 (skala Pauling)

Energi ionisasi
(detil)
ke-1: 737.1 kJ/mol

ke-2: 1753.0 kJ/mol
ke-3: 3395 kJ/mol
Jari-jari atom
135 pm

Jari-jari atom (terhitung)
149 pm

Jari-jari kovalen
121 pm

Jari-jari Van der Waals
163 pm

1.6. Lain-lain
Sifat magnetik
ferromagnetic

Resistivitas listrik
(20 °C) 69.3 nΩ•m
Konduktivitas termal
(300 K) 90.9 W/(m•K)
Ekspansi termal
(25 °C) 13.4 µm/(m•K)
Kecepatan suara
(pada wujud kawat) (suhu kamar) 4900 m/s

Modulus Young
200 GPa
Modulus geser
76 GPa
Modulus ruah
180 GPa
Nisbah Poisson
0.31
Skala kekerasan Mohs
4.0
Kekerasan Vickers
638 MPa
Kekerasan Brinell
700 MPa
Nomor CAS
7440-02-0
1.7. Isotop
iso
NA
waktu paruh
DM
DE (MeV)
DP

56Ni syn
6.075 d
ε
- 56Co

γ
0.158, 0.811 -
58Ni 68.077% Ni stabil dengan 30 neutron

59Ni syn
76000 y
ε - 59Co

60Ni 26.233% Ni stabil dengan 32 neutron

61Ni 1.14% Ni stabil dengan 33 neutron

62Ni 3.634% Ni stabil dengan 34 neutron

63Ni syn
100.1 y
β-
0.0669 63Cu

64Ni 0.926% Ni stabil dengan 36 neutron

1.3. Pemanfaatan Bahan Galian Nikel
Nikel sangat banyak manfaatnya antara lain :
1. Untuk pembuatan baja tahan karat,
2. Sebagai selaput penutup barang-barang yang dibuat dari besi atau baja,
3. Alat-alat laboratorium Fisika dan Kimia,
4. Digunakan dalam bentuk paduan untuk pembuatan alat-alat yang dipakai dalam industri mobil dan pesawat terbang.
5. Nikel juga digunakan sebagai bahan paduan logam yang banyak digunakan diberbagai industri logam.

BAB II
PEMBAHASAN

NIKEL

Gambar 1.1. Bijih Nikel Gambar 1.2. Nikel Istemewa

2.1. Keterdapatan Bahan Galian Nikel
Potensi nikel terdapat di Pulau Sulawesi, Kalimantan bagian tenggara, Maluku, dan Papua.Selain itu terdapat juga di daerah Pulau Obi, Kabupaten Halmahera Selatan (Halsel), Maluku Utara (Malut) Ternate.

2.2. Keadaan Geologi
Nikel biasanya terbentuk bersama-sama dengan kromit dan platina dalam batuan ultrabasa seperti peridotit, baik termetamorfkan ataupun tidak. Terdapat dua jenis endapan nikel yang bersifat komersil, yaitu: sebagai hasil konsentrasi residual silika dan pada proses pelapukan batuan beku ultrabasa serta sebagai endapan nikel-tembaga sulfida, yang biasanya berasosiasi dengan pirit, pirotit, dan kalkopirit.

PROTOLITH
Merupakan dasar (bagian terbawah) dari penampang vertikal.
Merupakan batuan asal yang berupa batuan ultramafik (harzburgite, peridotit atau dunit). Nikel terdapat (muncul) bersama-sama dengan struktur mineral silikat dari magnesium-rich olivin atau sebagai hasil (alterasi serpentinisasi). Olivin tidak stabil pada pelapukan kimiawi “amorphous ferric hydroxides”, minor amorphous silikat dan beberapa unsur tidak mobile lainnya.
SAPROLITE
Fragmen-fragmen batuan asal masih ada, tetapi mineral-mineralnya pada umumnya sudah terubah.
Batas antara zona saprolite dan protolith pada umumnya irregular dan bergradasi.
Pada beberapa endapan nikel laterit, zona ini dicirikan dengan keberadaan pelapukan mengulit bawang (spheroidal weathering).
Dengan berkembangnya proses pelapukan, unsur Mg di dalam protholith umumnya terlindikan (leached), dan silika sebagian terbawa oleh air tanah.
LIMONIT
Bagian yang kaya dengan oksida besi akibat dari proses pembentukan zona saprolite (oksida besi dominan pada bagian atas dari zona saprolite) horizon limonit.
TUDUNG BESI (erriginous duricrust, cuirasse, canga, ferricrete)
Suatu lapisan dengan konsentrasi besi yang cukup tinggi, melindungi lapisan endapan laterit di bawahnya terhadap erosi.

2.3. Genesa Bahan Galian Nikel
Endapan nikel laterit merupakan hasil pelapukan lanjut dari batuan ultramafik pembawa Ni-Silikat. Umumnya terdapat pada daerah dengan iklim tropis sampai dengan subtropis. Pengaruh iklim tropis di Indonesia mengakibatkan proses pelapukan yang intensif, sehingga beberapa daerah di Indonesia memiliki profil laterit (produk pelapukan) yang tebal dan menjadikan Indonesia sebagai salah satu negara penghasil nikel laterit yang utama. Proses konsentrasi nikel pada endapan nikel laterit dikendalikan oleh beberapa faktor yaitu, batuan dasar, iklim, topografi, airtanah, stabilitas mineral, mobilitas unsur, dan kondisi lingkungan yang berpengaruh terhadap tingkat kelarutan mineral.
Genesa Umum Nikel Laterit berdasarkan cara terjadinya, endapan nikel dapat
dibedakan menjadi 2 macam, yaitu endapan sulfida nikel – tembaga berasal dari mineral pentlandit, yang terbentuk akibat injeksi magma dan konsentrasi residu (sisa) silikat nikel hasil pelapukan batuan beku ultramafik yang sering disebut endapan nikel laterit. Menurut Bateman (1981), endapan jenis konsentrasi sisa dapat terbentuk jika batuan induk yang mengandung bijih mengalami proses pelapukan, maka mineral yang mudah larut akan terusir oleh proses erosi, sedangkan mineral bijih biasanya stabil dan mempunyai berat jenis besar akan tertinggal dan terkumpul menjadi endapan konsentrasi sisa. Air permukaan yang mengandung CO2 dari atmosfer dan terkayakan kembali oleh material – material organis di permukaan meresap ke bawah permukaan tanah sampai pada zona pelindihan, dimana fluktuasi air tanah berlangsung. Akibat fluktuasi ini air tanah yang kaya akan CO2 akan kontak dengan zona saprolit yang masih mengandung batuan asal dan melarutkan mineral – mineral yang tidak stabil seperti olivin / serpentin dan piroksen. Mg, Si dan Ni akan larut dan terbawa sesuai dengan aliran air tanah dan akan memberikan mineral – mineral baru pada proses pengendapan kembali (Hasanudin dkk, 1992). Boldt (1967), menyatakan bahwa proses pelapukan dimulai pada batuan ultramafik (peridotit, dunit, serpentin), dimana pada batuan ini banyak mengandung mineral olivin, magnesium silikat dan besi silikat, yang pada umumnya banyak mengandung 0,30 % nikel.
Batuan tersebut sangat mudah dipengaruhi oleh pelapukan lateritik. Air tanah yang kaya akan CO2 berasal dari udara luar dan tumbuh – tumbuhan, akan menghancurkan olivin. Terjadi penguraian olivin, magnesium, besi, nikel dan silika kedalam larutan, cenderung untuk membentuk suspensi koloid dari partikel – partikel silika yang submikroskopis. Didalam larutan besi akan bersenyawa dengan oksida dan mengendap sebagai ferri hidroksida. Akhirnya endapan ini akan menghilangkan air dengan membentuk mineral – mineral seperti karat, yaitu hematit dan kobalt dalam jumlah kecil, jadi besi oksida mengendap dekat dengan permukaan tanah. Proses laterisasi adalah proses pencucian pada mineral yang mudah larut dan silika pada profil laterit pada lingkungan yang bersifat asam dan lembab serta membentuk konsentrasi endapan hasil pengkayaan proses laterisasi pada unsur Fe, Cr, Al, Ni dan Co (Rose et al., 1979 dalam Nushantara 2002) . Proses pelapukan dan pencucian yang terjadi akan menyebabkan unsur Fe, Cr, Al, Ni dan Co terkayakan di zona limonit dan terikat sebagai mineral – mineral oxida / hidroksida, seperti limonit, hematit, dan Goetit (Hasanudin,1992).
Endapan bijih nikel laterit, yaitu bijih nikel yang terbentuk sebagai hasil pelapukan batuan ultramafik dan terkonsentrasi pada zona pelapukan (Peters, 1978).
Bijih nikel laterit merupakan salah satu sumber bahan logam nikel yang banyak terdapat di Indonesia, diperkirakan mencapai 11% cadangan nikel dunia.
Bijih nikel yang kandungan nikelnya lebih kecil dari 2% belum termanfaatkan dnegan baik. Proses pengolahan bijih nikel laterit kadar rendah pada bijih nikel laterit jenis limonit dan jenis saprolit telah berhasil dilakukan.
Selain itu, telah ditemukan cara untuk memperbaiki kinerja proses leaching dengan AAC (Ammonia Ammonium Carbonate ) terhadap bijih nikel laterit kadar rendah yang kandungan magnesiumnya sampai 15 % yaitu dengan penambahan bahan aditif baru seperti kokas dan garam NaCl yang digabungkan dengan aditif konvensional sulfur ke dalam pellet. Pengolahan dengan AAC saat ini mempunyai kelemahan perolehan total nikel dan kobalnya rendah.

2.4. Kegunaan
• Untuk mengolah bijih nikel laterit berkadar rendah
• Dapat meningkatkatkan perolehan total nikel dan kobal dari proses leaching dengan AAC, terhadap bijih nikel laterit kadar rendah yang kandungan magnesiumnya (Mg) tinggi.

2.5. Keuntungan teknis/ekonomis
• Ekstraksi kobal dari bijih nikel laterit lebih tinggi dibandingkan proses lain,
• Pemakaian energi lebih murah karena bahan reduktor yang digunakan adalah batubara,
• Tidak diperlukan alat pembangkit gas CO atau H2,
• Proses reduksi/metalisasi dapat dilakukan secara selektif dan dapat dikontrol dengan mudah,
• Menghindari oksidasi kembali logam nikel dan kobal dengan dialirkannya gas berkadar oksigen < 1 % selama proses pendinginan,
• Proses pelarutan cukup dengan menggunakan asam sulfat encer,
• Unsur besi yang ikut terlarut dapat diperkecil,
• Dapat meningkatkan perolehan total nikel dan kobal yang mencapai 75 – 89,89 % untuk nikel dan 35 – 47,77 % untuk kobal dari proses leaching dengan AAC terhadap bijih nikel laterit kadar rendah yang berkadar magnesium 15 %.

2.6.Eksplorasi Nikel

Gambar 1.3. Eksplorasi Nikel

Dalam Eksplorasi Nikel banyak hal yang harus dilakukan, antara lain :
a) Membuat analisis statistic dari data kadar bijih nikel, ketebalan bijih, dan ketebalan overburden, kemudian lakukan verifikasi data berdasarkan parameter statistic.
b) Membuat peta kontur topografi dan kontur kadar bijih nikel kemudian membuat analisanya.
c) Membuat peta kontur ketebalan OB.
d) Menghitung sumberdaya bijih nikel, bisa menggunakan metode NNP.
e) Membuat batas PIT potensial.
f) Lalu menghitung berapa cadangannya

2.7. Eksploitasi Nikel

Gambar 1.4. Eksploitasi Nikel

Lorite dan Logam nikel diambil dari endapan primer yaitu dari batuan ultra basa dan endapan residu yaitu berupa tanah laterite nikel berupa mineral garnierite, Ni-chlorite dan Nieeolite NiAs. Terlihat adanya perubahan Ekploitasi dari bahn Galian Nikel.

2.8. Pengolahan Bahan Galian Nikel
a) Hasil bijih yang ada dimasukan kedalam proses penghancuran sehingga mempunyai diameter 20 cm dan kemudian digiling sampai diameter 2 mm dengan kadar nikel 21 %.
Pemurnian untuk menghilangkan unsure belerang, silica, karbon, phaspor, chromium, dengan 2 tahap yaitu :
1. Menggunakan karbit dan bubuk soda sebagai bahan pembuang belerang.
2. Menggunakan bath (pemurnian karbon tinggi) yaitu ferro nikel cair dalam tanggul goyang (shaking conveyor) dengan dihambusi oksigen untuk membuang berbagai unsur yaitu chromium, karbon, silica, phaspor sehingga akan menghasilkan ferro nikel dengan kadar karbon rendah.
b) Hasil penambangan di Soroako mengandung nikel (saprolitie ore) tapi masih mengandung air 28%, kemudian direduksi untuk menghilangkan kadar air dan minyak yang diinjeksi dengan aliran listrik yang terputus – putus diatas panas dalam tanur, kemudian diberi belerang, dilebur dan didapatkan nikel kasar dengan kadar 25 % nikel dan dimurnikan dalam sebuah konvertor sehingga kadar nikelnya menjadi 75% nikel matte.

Gambar 1.5. Peleburan Nikel

Secara umum, mineral bijih di alam ini dibagi dalam 2 (dua) jenis yaitu mineral sulfida dan mineral oksida. Begitu pula dengan bijih nikel, ada sulfida dan ada oksida. Masing-masing mempunyai karakteristik sendiri dan cara pengolahannya pun juga tidak sama. Dalam bahasan kali ini akan dibatasi pengolahan bijih nikel dari mineral oksida (Laterit).

Bijih nikel dari mineral oksida (Laterite) ada dua jenis yang umumnya ditemui yaitu Saprolit dan Limonit dengan berbagai variasi kadar. Perbedaan menonjol dari 2 jenis bijih ini adalah kandungan Fe (Besi) dan Mg (Magnesium), bijih saprolit mempunyai kandungan Fe rendah dan Mg tinggi sedangkan limonit sebaliknya. Bijih Saprolit dua dibagi dalam 2 jenis berdasarkan kadarnya yaitu HGSO (High Grade Saprolit Ore) dan LGSO (Low Grade Saprolit Ore), biasanya HGSO mempunyai kadar Ni ≥ 2% sedangkan LGSO mempunyai kadar Ni.

2.9. Pengolahan Nikel FeNi dari Bijih Laterit

Tabel 1.8. Contoh Komposisi Saprolit Ore

Berdasarkan table 1, faktor yang paling penting diperhatikan adalah basisitas (tingkat kebasaan) MgO/SiO2 atau ada juga yang mengukur berdasarkan SiO2/MgO. Tingkat kebasaan ini menentukan brick/ refractory/bata tahan api yang harus digunakan di dalam tungku (furnace), jika basisitas tinggi maka refractory yang digunakan juga sebaiknya mempunyai sifat basa agar slag (terak) tidak bereaksi dengan refractory yang akan menghabiskan lapisan refractory tersebut. Basisitas juga menentukan viscositas slag, semakin tinggi basisitas maka slag semakin encer dan mudah untuk dikeluarkan dari furnace. Namun basisitas yang terlalu tinggi juga tidak terlalu bagus karena difusi Oksigen akan semakin besar sehingga kehilangan Logam karena oksidasi terhadap logam juga semakin besar.

Gambar 1.6.. Kesetimbangan Metal-Slag

(Ket: Slag selalu berada di atas metal karena densitynya lebih rendah)

Secara umum proses pengolahan bijih nikel jalur pyrometallurgy dibagi dalam beberapa tahap seperti dalam diagram berikut:

Gambar 1.7. Diagram alir proses
1. Kominusi
Kominusi adalah proses reduksi ukuran dari ore agar mineral berharga bisa terlepas dari bijihnya. Berbeda dengan pengolahan emas, dalam tahap kominusi untuk nikel ore ini hanya dibutuhkan ukuran maksimal 30 mm sehingga hanya dibutuhkan crusher saja dan tidak dibutuhkan grinder.
2. Drying
Drying atau pengeringan dibutuhkan untuk mengurangi kadar moisture dalam bijih. Biasanya kadar moisture dalam bijih sekitar 30-35 % dan diturunkan dalam proses ini dengan rotary dryer menjadi sekitar 23% (tergantung desain yang dibuat). Dalam rotary dryer ini, pengeringan dilakukan dengan cara mengalirkan gas panas yang dihasilkan dari pembakaran pulverized coal dan marine fuel dalam Hot Air Generator (HAG) secara Co-Current (searah) pada temperature sampai 200 C.

3. Calcining
Tujuan utama proses ini adalah menghilangkan air kristal yang ada dalam bijih,air kristal yang biasa dijumpai adalah serpentine (3MgO.2SiO2.2H2O) dan goethite (Fe2O3.H2O). Proses dekomposisi ini dilakukan dalam Rotary Kiln dengan tempetatur sampai 850 oC menggunakan pulverized coal secara Counter Current. Reaksi dekomposisi air kristal yang terjadi adalah sebagai berikut:

a. Serpentine

Reaksi dekomposisi dari serpentine adalah sebagai berikut:

3MgO.2SiO2.2H2O = 3 MgO + 2 SiO2 + 2 H2O

Reaksi ini terjadi pada temperatur 460-650 C dan tergolong reaksi endotermik. Pemanasan lebih lanjut MgO dan SiO2 akan membentuk forsterite dan enstatite yang merupakan reaksi eksotermik.

2 MgO + SiO2 = 2MgO.SiO2
MgO + SiO2 = MgO.SiO2

b. Goethite

Reaksi dekomposisi dari goethite adalah sebagai berikut:

Fe2O3.H2O = Fe2O3 + H2O

Reaksi ini terjadi pada 260C – 330C dan merupakan reaksi endotermik.

Di samping menghilangkan air kristal, pada proses ini juga biasanya didesain sudah terjadi reaksi reduksi dari NiO dan Fe2O3. Dalam teknologi Krupp rent, semua reduksi dilakukan dalam rotary kiln dan dihasilkan luppen. Sedangkan dalam technology Electric Furnace, hanya sekitar 20% NiO tereduksi secara tidak langsung dalam rotary kiln menjadi Ni dan 80% Fe2O3 menjadi FeO sedangkan sisanya dilakukan dalam electric furnace.

Produk dari rotary kiln ini disebut dengan calcined ore dengan kandungan moisture sekitar 2% dan siap dilebur dalam electric furnace.

4. Smelting
Proses peleburan dalam electric furnace adalah proses utama dalam rangkaian proses ini. Reaksi reduksi 80% terjadi secara langsung dan 20% secara tidak langsung pada temperature sampai 1650 C. Reaksi reduksi langsung yang terjadi adalah sebagai berikut:

NiO(l) + C(s) = Ni(l) + CO(g)
FeO(l) + C(s) = Fe(l) + CO(g)

Beberapa material yang mempunyai afinitas yang tinggi terhadap oksigen juga tereduksi dan menjadi pengotor dalam logam.

SiO2(l) + 2C(s) = Si(l) + 2CO(g)
Cr2O3(l) + 3C(s) = 2Cr(l) + 3CO(g)
P2O5(l) + 5C(s) = 2P(l) + 5CO(g)
3Fe(l) + C(s) = Fe3C(l)

Karbon disupplay dari Antracite (tergantung desain), dan reaksi terjadi pada zona leleh elektroda. CO(g) yang dihasilkan dari reaksi ini ditambah dengan CO(g) dari reaksi boudoard mereduksi NiO dan FeO serta Fe2O3 melalui mekanisme solid-gas reaction (reaksi tidak langsung):

NiO(s) + CO(g) = Ni(s) + CO2(g)
CoO(s) + CO(g) = Co(s) + CO2(g)
FeO(s) + CO(g) = Fe(s) + CO2(g)
Fe2O3(s) + CO(g) = 2FeO(s) + CO2(g)

Oksida stabil seperti SiO2, Cr2O3 dan P2O5 tidak tereduksi melalui reaksi tidak langsung. Sampai di sini Crude Fe-Ni sudah terbentuk dan proses sudah bisa dikatakan selesai.

Yield (recovery) dari nikel pada EAF dapat didekati seperti pada gambar berikut:

Gambar 1.8. Hubungan antara Fe yield dan Ni yield dalam EAF

Gambar 1.9. Hubungan antara Fe yield dan %Ni dalam Crude FeNi

Gambar 2.0. Diagram fasa biner Fe-Ni

Pada daerah interface (antar muka) Slag-Metal terjadi kesetimbangan sebagai berikut:
Si(l) + 2FeO(l) = 2Fe(l) + SiO2(l)
Si(l) + 2NiO(l) = 2Ni(l) + SiO2(l)
NiO(slag) + Fe(metal) = Ni(metal) + FeO(slag)

Sekali lagi basisitas sangat penting dalam kondisi ini, sebagai contoh proses yang didesain dengan basisitas 0,68 maka:

MgO = 0.68SiO2

MgO + SiO2 = 100%
0.68SiO2 + SiO2 = 100%
1.68SiO2 = 100% ®
SiO2 = 59.5% dan MgO = 40.5%
Korelasi antara slag melting point pada SiO2 59.5% dan MgO 40.5% diilustrasikan oleh diagram terner FeO-MgO-SiO2 dalam gambar 6 (diambil dari Slag Atlas, Verlagstahleisen, M.B.H., Duesseldorf, 1981 and I.J. Reinecke and H. Lagendikj, INFACON XI Conference Proceeding, 2007).

5. Refining
Pada proses ini yang paling utama adalah menghilangkan/memperkecil kandungan sulfur dalam crude Fe-Ni dan sering disebut Desulfurisasi. Dilakukannya proses ini berkaitan dengan kebutuhan proses lanjutan yaitu digunakannya Fe-Ni sebagai umpan untuk pembuatan Baja dimana baja yang bagus harus mengandung Sulfur maksimal 20 ppm sedangkan kandungan Sulfur pada Crude Fe-Ni masih sekitar 0,3% sehingga jika kandungan sulfur tidak diturunkan maka pada proses pembuatan baja membutuhkan kerja keras untuk menurunkan kandungan sulfur ini.

Proses ini dilakukan pada ladle furnace dengan agent sebagai berikut:

Tabel 1.9. Agent Untuk desulfurisasi

Sedangkan reaksi yang terjadi adalah sebagai berikut:

CaC2 (S) + S = CaS (S) + 2C (Sat)
Na2CO3 + S + Si = Na2S + (SiO2) + CO
Na2Co3 + SiO2 = Na2O . SiO2 + CO2

Reaksi ini merupakan reaksi eksotermik sehingga tidak membutuhkan pemanasan lagi pasca smelting.

Proses selanjutnya adalah converting, sebenarnya proses ini masih dalam bagian refining hanya untuk membedakan antara menurunkan sulfida dengan menurunkan pengotor lain seperti Si, P, Cr dan C sesuai dengan kebutuhan. Sedangkan prosesnya sama hanya saja reaksi lebih dominan oksidasi dari oksigen.

Si (l) + O2 (g) = SiO2 (l) ↔ SiO2 (l) + CaO (l) = CaO . SiO2 (l)
Cr (l) + 5O2 (g)= 2Cr2O3 (l)
4P (l)+ 5O2 (g)= 2P2O5 (l) ↔CaO (l)+P2O5 (l)= CaO. P¬2O5 (l)
C(l) + ½ O2 (g)= CO (g)
C(l) + O2 (g)= CO2 (g)

Tabel 2.0. Contoh Komposisi Crude Fe-Ni yang dihasilkan

2.10. Proses Pemurnian Nikel (Ni)

Proses pemurnian nikel diawali dengan pembakaran bijih nikel, kemudian dicairkan untuk proses reduksi dengan menggunakan arang dan bahan tambahan lain dalam sebuah dapur tinggi. Dari proses tersebut nikel yang didapat kurang lebih 99%. Jika hasil yang diinginkan lebih baik (tidak berlubang), proses pemurniannya dikerjakan dengan jalan elektrolisis di atas sebuah cawan tertutup dalam dapur nyala api. Reduktor yang digunakan biasanya mangan dan fosfor.

Bijih-bijih nikel dapat diklassifikasikan menjadi dua golongan :

Setelah bijih mengalami proses pendahuluan yang meliputi crushing drying, sintering, kemudian bijih diproses lanjut secara
a.Proses Pyrometallurgy
b.Proses Hydrometallurgy
-Proses Pyrometallurgy
Reduksi yang terjadi pada proses ini hanya sebagian dari besi saja yang dapat diikat menjadi terak, dan sebagian besar masih dalam bentuk ferro-nikel alloy.Dalam hal ini untuk memisahkan besi dari nikel pada reaksi peleburan tersebut ditambahkan beberapa bahan yang mengandung belerang (Gypsum atau Pyrite). Karena perbedaan daya ikat besi dan nikel terhadap oksigen dan belerang, sehingga proses ini didapatkan metal yaitu paduan Ni3S2 dan FeS dan sebagian besar besi dapat diterakkan.

Metal yang dihasilkan ini masih mengandung lebih dari 60 % Fe dan selanjatnya metal yang masih dalam keadaan cair terus diprosos lagi dalam konvertor. Proses-proses konvertor diberikan bahan tambah silikon untuk menterakkan oksida besi.Terak hasil konvertor ini masih mengandung nikel yang cukup tinggi,sehingga terak ini biasanya di proses ulang pada peleburan(Resmelting).Proses selanjutnya metal di panggang untuk memisahkan belerang.

Nikel oxide yang didapat dari pemanggangan selanjutnya di reduksi dengan bahan tambah arang (charcoal), sehingga didapat logam nikel.
Pada proses ini concentrat di leaching dengan larutan ammonia didalam autoclave dengan tekanan kurang lebih 7 atm (gauge)Tembaga, nikel dan cobalt terlarut kedalam larutan ammonia, reaksi yang terjadi :

Pada gambar 2.8 ditunjukkan diagram proses pemurnian bijih nikel dengan metoda pyrometallurgy.

Gambar 2.1. Proses Pemurnian Nikel

BAB III
PENUTUP

3.1.Kesimpulan
Dari hasil pembuatan makalah mengenai Bahan Galian Nikel ini, bisa kita lihat dan simpulkan bagaimana proses awal terbentuknya (Genesa), kondisi geologi, tahap eksplorasi, tahap eksploitasi, keterdapatan, dan pengolahannya, serta informasi – informasi lainnya.
Manfaat dari bahan galian Nikel ini sangat banyak, sehingga sangat menarik minat para pengusaha – pengusaha untuk membuka pertambangan yang bergerak dibidang bahan galian Nikel. Didalam proses pertambangan bahan galian Nikel banyak hal yang harus kita ketahui, salah satunya mengenai dampak lingkungannya, sehingga pada saat kita melakukan proses penambangan tidak terjadi pencemaran lingkungan.
Dewasa ini pencemaran lingkungan sangat banyak terjadi, oleh perusahaan – perusahaan yang tidak bertanggung jawab dan tidak mengerti mengenai lingkungan. Maka tidak terlambat untuk kita menjaga lingkungan agar terbebas dari pencemaran –pencemaran limbah, dan pencemaran lainnya.

Gambar 2.2. Sumber Daya Dan Cadangan Mineral di Indonesia

SUMBER REFERENSI / DAFTAR PUSTAKA

…………………

(Catatan : Maaf, Tabel dan gambar tidak disertakan pada halaman ini)
Silahkan download disini

About these ads
  1. No trackbacks yet.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

%d bloggers like this: